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Summary: Arteannuic acid and arteannuin B are separately convertible into intermediate 8, 
which is transformed by four or five high-yielding steps into the title anti-malarial sesquiterpsne 
peroxides. 

The outstanding anti-malarial properties of artemisinin (1 )’ and derivatives preparable 

therefrom (e.g. 2,‘3*) have prompted extensive synthetic efforts to supplement the small amountsla 

of 1 typically isolable from the leaves of Aft8fniSia annua L. 

1 2 3 

Monoterpenes such as R-(+)-citronellap and (-)-isopulegol’ have been used as chiral building 

blocks for skeletal elaboration into 1 . The penultimate step in these syntheses” was singlet 

oxygen (lo*) addition’ to exocyclic methyl vinyl ethers and acid-induced rearrangement of the 

resultant dioxetanes to produce the biologically-active 1,2,4-trioxane substructure. Ene reactions 

and dioxetane cleavage can interfere during such protocoIs.60 Alternatively, Averye utilized the 

abnormal ozonolysis of vinyl silanes’ , which can lead to siloxydioxetanes, to arrive at 1 and a 

variety of synthetic analogs. In addition, several brief partial syntheses beginning with 

sesquiterpene congeners of 1 have been reported 0 in which the proper sequential participation of 

two moles of ‘0, was required, first an ene reaction and then a [2+2] cycloaddition-dioxetane 

cleavage on a rearranged allylic peroxide. These more complex oxygenation sequences typically 

give low yields of 1 and 3, in part because other ‘0, reaction products are equally probable or 

even more so. We have also been interested in utilizing relatively more abundant constituents of 
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ArtemMa annua L. for partial synthesis of 1 and 3, but with specific enol ether 1 0, “targets” 

incorporated to minimize the above side reactions. This letter reports a successful approach to this 

problem, in which both arteannuic acid (4) and aneannuin B” (5) are converted to 1 and 3 via a 

common novel pathway that excludes unwanted epimerizations at C-l or C-7. 

10 11 

6 =CH 2 YreflOa 

OR bH 

12a R=CH3 

12b R = CH20CH3 
13 

Initial experiments were performed with ll-R-dihydroarteannuin B’O” (6), obtained from 5 (73% 

yield) by hydrogenation” over pre-reduced Wilkinson’s catalyst in 1 :l ethanol/benzene. After 

examining a variety of protocols for converting 6 into 7, we settled on the Sharpless procedure” , 

using 2:l n-butyllithiumitungsten hexachloride in THF. Surprisingly, lactone 8 was isolated instead 

(60% yield), presumably by Lewis-acid-mediated isomerization of the more strained 7’“, since 

some epoxide 6 can be recovered unchanged. The assigned configuration of 8 was supported by 

NOE enhancement of the C-5 hydrogen signal (5.59 ppm) upon irradiation of the C-11 hydrogen. 

Further confirmation came from X-ray crystal structure determination” of k&o-aldehyde 1 0 (mp 

106-l 06.5O), the oronolysis product formed in quantitative yield from 8. The C-6 epimerization of 7 

to 8 was not harmful since that stereocenter is removed in subsequent steps. A second and more 

plentiful source of 8 appeared with the novel discovery that allylic oxidation of 11-R 

dihydroarteannuic acid (9)3’ with CrOa-3,5dimethylpyrazole’* in CH.$I, proceeded rapidly at -2OO 

to the ‘carboxyl-trapped” y-lactone, with only slow further C-3 oxidation of 8. The ketone carbonyl 
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group in 1 0 was selectively protected, in the presence of the more hindered aldehyde, by using 1 

eq. of 1,2-bis(trimethylsilyloxy)ethane and TMS triflate” in CH,CI, to secure pure 11 I7 in 94% yield. 

Reductive cleavage of 11 with 2 eq. of sodium naphthalenide in THF at -3CrO was followed by in 

situ reaction with several alkylating agents (CHsI, CHsOCH,CI) to produce enol ether-esters”~” 

12a and 12b in 70% and 82% yields, respectively. The hindered aldehyde enolates underwent 

only 0-alkylation, even in the absence of dimethyl sulfoxide, typically used to solvate the sodium 

counterions. A number of ‘02 reactions” were run on l2a and 12 b in CD,OD at -78O, with Rose 

Bengal as photosensitizer, without prior hydrolysis of the ethylene ketal. Warming the dioxetane 

intermediate= gradually to room temperature in the presence of camphorsulfonic acid, followed by 

solvent removal at reduced pressure and silica gel chromatography led to 30-35% isolated yields of 

1 , mp 155156O, with dioxetane cleavage products*’ as the principal contaminants, 

Since deoxoartemisinin (3) has in vitro and in vivo antimalarial activity superiol2 to 1 , we also 

examined the ‘0, reaction of carbinol 1 3” (formed in 90% yield by LiAIH4/ether reduction of 1 2 b), 

as a direct source of 3. Pure 3, mp 106O was isolated in 65% yield with minimal by-product 

formation, a gratifying outcome when compared with other approachesgxP , as well as the alternative 

12+i +3’ sequence (which provided an authentic sample for ‘H and 1 3C NMR and MS 

comparison’ ). 

In conclusion, both 1 and 3 have been reproducibly prepared in only four or five steps from 

lactone 8 and the latter is readily accessible from both 4 and 5. We expect that additional yield 

optimization will be possible upon scale-up beyond the 1 O-50 mg reactions described herein. 

Further experimental details will be provided in the full paper. 
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